Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540310

RESUMEN

Metastatic melanoma has a very poor prognosis. Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors, are cholesterol-lowering agents with a potential for cancer treatment. The inhibition of HMGCR by statins, however, induces feedback, which paradoxically upregulates HMGCR expression via sterol regulatory element-binding protein-2 (SREBP2). Dipyridamole, an antiplatelet agent, is known to inhibit SREBP2 upregulation. We aimed to demonstrate the efficacy of statin-dipyridamole combination treatment in both human and spontaneously occurring canine melanoma cell lines. The half maximal inhibitory concentration (IC50) of atorvastatin showed a 68-92% reduction when combined with dipyridamole, compared with that of atorvastatin alone. In some melanoma cell lines, cell proliferation was suppressed to almost zero by the combination treatment (≥3 µM atorvastatin). Finally, the BRAF inhibitor, vemurafenib, further potentiated the effects of the combined statin-dipyridamole treatment in BRAF V600E mutation-bearing human melanoma cell lines. In conclusion, the inexpensive and frequently prescribed statin-dipyridamole combination therapy may lead to new developments in the treatment of melanoma and may potentiate the effects of vemurafenib for the targeted therapy of BRAF V600E-mutation bearing melanoma patients. The concordance between the data from canine and human melanoma cell lines reinforces this possibility.

2.
Vet Comp Oncol ; 22(1): 156-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044042

RESUMEN

Canine oral melanoma is a highly malignant cancer with a poor prognosis. Statins, commonly used drugs for treating dyslipidemia, exhibit pleiotropic anticancer effects and marked anti-proliferative effects against melanoma cells. The anticancer effects among statins vary; in human cancers, lipophilic statins have shown stronger anticancer effects compared with hydrophilic statins. However, data on the differences in the effects of various statins on canine cancer cells are lacking, hence the optimal statins for treating canine melanoma remain unknown. Therefore, this study aimed to clarify the most effective statin by comparing the anticancer effects of hydrophilic rosuvastatin and lipophilic atorvastatin, simvastatin, fluvastatin and pitavastatin on three canine oral melanoma cell lines. Time-dependent measurement of cell confluence showed that lipophilic statins had a stronger anti-proliferative effect on all cell lines than hydrophilic rosuvastatin. Quantification of lactate dehydrogenase release, an indicator of cytotoxicity, showed that lipophilic statins more effectively induced cell death than hydrophilic rosuvastatin. Lipophilic statins affected both inhibition of cell proliferation and induction of cell death. The anticancer effects of statins on canine oral melanoma cells differed in the following ascending order of IC50 values: pitavastatin < fluvastatin = simvastatin < atorvastatin < rosuvastatin. The required concentration of pitavastatin was approximately 1/20th that of rosuvastatin. Among the statins used in this study, pitavastatin had the highest anticancer effect. Our results suggest lipophilic pitavastatin as the optimal statin for treating canine oral melanoma.


Asunto(s)
Enfermedades de los Perros , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Melanoma , Neoplasias de la Boca , Animales , Perros , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Rosuvastatina Cálcica , Melanoma/tratamiento farmacológico , Melanoma/veterinaria , Fluvastatina/uso terapéutico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Simvastatina/farmacología
3.
J Neurochem ; 167(6): 778-794, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037675

RESUMEN

Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.


Asunto(s)
Agresión , Núcleo Amigdalino Central , Animales , Humanos , Masculino , Ratas , Agresión/fisiología , Privación Materna , Ratas Sprague-Dawley
4.
Anim Sci J ; 94(1): e13894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054387

RESUMEN

Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.


Asunto(s)
Sulfatos de Condroitina , Dermatán Sulfato , Animales , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/análisis , Dermatán Sulfato/metabolismo , Dermatán Sulfato/farmacología , Glicosaminoglicanos/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Diferenciación Celular
5.
J Pharmacol Sci ; 153(3): 104-112, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770151

RESUMEN

Statins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own. We performed suppression of CYP11A1, a rate-limiting enzyme in androgen synthesis from cholesterol, using siRNA or inhibitors, to examine the effect of steroidogenesis inhibition on statin sensitivity in CRPC cells. Here, we suggested that CYP11A1 silencing sensitized the statin-resistant CRPC cell line DU-145 to atorvastatin via HMGCR downregulation by an increase in intracellular free cholesterol. We further demonstrated that CYP11A1 silencing induced epithelial-mesenchymal transition, which converted DU-145 cells into a statin-sensitive phenotype. This suggests that concomitant use of CYP11A1 inhibitors could be an effective approach for overcoming statin resistance in CRPC. Moreover, we showed that ketoconazole, a CYP11A1 inhibitor, sensitized DU-145 cells to atorvastatin, although not all the molecular events observed in CYP11A1 silencing were reproducible. Although further studies are necessary to clarify the detailed mechanisms, ketoconazole may be effective as a concomitant drug that potentiates the anticancer effect of atorvastatin.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Atorvastatina/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Cetoconazol , Colesterol , Línea Celular Tumoral , Hidroximetilglutaril-CoA Reductasas/genética
6.
Biochem Biophys Res Commun ; 677: 13-19, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37541087

RESUMEN

Statins are cholesterol-lowering drugs that have exhibited potential as cancer therapeutic agents. However, as some cancer cells are resistant to statins, broadening an anticancer spectrum of statins is desirable. The upregulated expression of the statin target enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (HMGCR), in statin-treated cancer cells is a well-known mechanism of statin resistance, which can be counteracted by the downregulation of HMGCR gene expression, or degradation of the HMGCR protein. However, the mechanism by which HMGCR degradation influences the anticancer effects of statins remain unreported. We tested the effect of the HMGCR degrader compound SR-12813 at a concentration that did not affect the growth of eight diverse tumor cell lines. Combined treatment with atorvastatin and a low concentration of SR-12813 led to lowering of increased HMGCR expression, and augmented the cytostatic effect of atorvastatin in both statin-resistant and -sensitive cancer cells compared with that of atorvastatin treatment alone. Dual-targeting of HMGCR using statins and SR-12813 (or similar compounds) could provide an improved anticancer therapeutic approach.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Atorvastatina/farmacología , Regulación hacia Arriba , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo
7.
Heliyon ; 9(7): e18017, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37501994

RESUMEN

Statins have anticancer effects and may be used as anticancer agents via drug repositioning. In reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays, the internal reference gene must not be affected by any experimental conditions. As statins exert a wide range of effects on cells by inhibiting the mevalonate pathway, it is possible that statin treatment might alter the expression of housekeeping genes used as internal reference genes, thereby misleading the assessment of obtained gene expression data. Here, we evaluated the expression stability of internal reference genes in atorvastatin-treated cancer cell lines. We treated both statin-sensitive and statin-resistant cancer cell lines with atorvastatin at seven different concentrations and performed RT-qPCR on 15 housekeeping genes whose expression stability was then assessed using five different algorithms. In both statin-sensitive and statin-resistant cancer cell lines, atorvastatin affected the expression of certain internal reference genes in a dose-dependent and cancer cell line-dependent manner; therefore, caution should be exercised when comparing target gene expression between cells. Our findings emphasize the importance of the validation of internal reference genes in gene expression analyses in drug treatment-based cancer research.

8.
Adipocyte ; 12(1): 2235081, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436361

RESUMEN

Normalization is a crucial step in gene expression analysis to avoid misinterpretation. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression of 10 candidate housekeeping genes in non-differentiated (ND) and differentiated (DI) 3T3-L1 cells on days 5 and 10. We used geNorm, NormFinder, BestKeeper, RefFinder, and the ∆Ct method to evaluate expression stability. The findings revealed that (1) the expression levels of the reference genes changed over time, even in non-differentiating cells, and (2) peptidylprolyl isomerase A (Ppia) and TATA box-binding protein (Tbp) were stable reference genes for 10 days in both undifferentiated and differentiated 3T3-L1 cells. Notably, the expression of known reference genes in non-differentiating cells was altered throughout the experiment.


Asunto(s)
Perfilación de la Expresión Génica , Genes Esenciales , Ratones , Animales , Células 3T3-L1 , Diferenciación Celular/genética
9.
Yonago Acta Med ; 66(1): 7-18, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36811028

RESUMEN

Background: Canine mammary gland tumors can be used as predictive models for human breast cancer. There are several types of microRNAs common in human breast cancer and canine mammary gland tumors. The functions of microRNAs in canine mammary gland tumors are not well understood. Methods: We compared the characterization of microRNA expression in two-dimensional and three-dimensional canine mammary gland tumor cell models. We evaluated the differences between two- and three-dimensional cultured canine mammary gland tumor SNP cells by assessing microRNA expression levels, morphology, drug sensitivity, and hypoxia. Results: The expression of microRNA-210 in the three-dimensional-SNP cells was 10.19 times higher than that in the two-dimensional-SNP cells. The intracellular concentrations of doxorubicin in the two- and three-dimensional-SNP cells were 0.330 ± 0.013 and 0.290 ± 0.048 nM/mg protein, respectively. The IC50 values of doxorubicin for the two- and three-dimensional-SNP cells were 5.2 and 1.6 µM, respectively. Fluorescence of the hypoxia probe, LOX-1, was observed inside the sphere of three-dimensional-SNP cells without echinomycin but not in two-dimensional-SNP cells. The three-dimensional-SNP cells treated with echinomycin showed weak LOX-1 fluorescence. Conclusion: The present study showed a clear difference in microRNA expression levels in cells cultured in a two-dimensional adherent versus a three-dimensional spheroid model.

10.
Life Sci ; 312: 121249, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455649

RESUMEN

AIMS: Statins, cholesterol-lowering drugs, are potential therapeutic agents for inhibiting cancer proliferation. However, the mechanisms that mediate the effects of statins, the homeostatic responses of tumor cells to statin therapy, and the modes underlying the antitumor effects of statins remain unclear. MAIN METHODS: To uncover the effects of statins on cancer cells in vitro, we performed transcriptome and metabolome analyses on atorvastatin-treated statin-resistant and statin-sensitive lung cancer cells. KEY FINDINGS: The results of Gene Ontology terms and pathway enrichment analyses showed that after 24 h of atorvastatin treatment, the expression of cell cycle- and DNA replication-related genes was significantly decreased in the statin-sensitive cancer cells. The results of metabolome analysis showed that the components of polyamine metabolism and purine metabolism, glycolysis, and pentose phosphate pathway were decreased in the statin-sensitive cancer cells. SIGNIFICANCE: Differences in cellular properties between statin-sensitive and statin-resistant cancer cells revealed additional candidates for therapeutic targets in statin-treated cancer cells and suggested that inhibiting these metabolic pathways could improve efficacy. In conclusion, combining statins with inhibitors of polyamine metabolism (cell proliferation and protein translation), purine metabolism (DNA synthesis), glycolytic system (energy production), and pentose phosphate pathway (antioxidant stress) might enhance the anticancer effects of statins.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias , Ácido Mevalónico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Atorvastatina/farmacología , Poliaminas , Purinas , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
Front Neurosci ; 17: 1308368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292903

RESUMEN

Early child maltreatment, such as child abuse and neglect, is well known to affect the development of social skills. However, the mechanisms by which such an adverse environment interrupts the development of social skills remain unelucidated. Identifying the period and brain regions that are susceptible to adverse environments can lead to appropriate developmental care later in life. We recently reported an excitatory/inhibitory imbalance and low activity during social behavior in the medial prefrontal cortex (mPFC) of the maternal separation (MS) animal model of early life neglect after maturation. Based on these results, in the present study, we investigated how MS disturbs factors related to excitatory and inhibitory neurons in the mPFC until the critical period of mPFC development. Additionally, we evaluated whether the effects of MS could be recovered in an enriched environment after MS exposure. Rat pups were separated from their dams on postnatal days (PDs) 2-20 (twice daily, 3 h each) and compared with the mother-reared control (MRC) group. Gene expression analysis revealed that various factors related to excitatory and inhibitory neurons were transiently disturbed in the mPFC during MS. A similar tendency was found in the sensory cortex; however, decreased parvalbumin (PV) expression persisted until PD 35 only in the mPFC. Moreover, the number of PV+ interneurons decreased in the ventromedial prefrontal cortex (vmPFC) on PD 35 in the MS group. Additionally, perineural net formation surrounding PV+ interneurons, which is an indicator of maturity and critical period closure, was unchanged, indicating that the decreased PV+ interneurons were not simply attributable to developmental delay. This reduction of PV+ interneurons improved to the level observed in the MRC group by the enriched environment from PD 21 after the MS period. These results suggest that an early adverse environment disturbs the development of the mPFC but that these abnormalities allow room for recovery depending on the subsequent environment. Considering that PV+ interneurons in the mPFC play an important role in social skills such as empathy, an early rearing environment is likely a very important factor in the subsequent acquisition of social skills.

12.
Anat Histol Embryol ; 51(5): 666-673, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35899393

RESUMEN

The complexity of the Sunda porcupine skin has become an important topic due to the unique characteristics of its quill follicles. The structure and chemical composition of the skin has affected many physiological and other conditions. Generally, quills are larger, stronger and stiffer than hair; therefore, the skin structure needs to adapt to support their physiology. The strength of the skin is determined by its collagen composition and arrangement; therefore, this study aims to analyse the composition and distribution of thick and thin fibres based on the specific characteristics of Sunda porcupine skin under polarized light using picrosirius red staining. The skin samples used were from the thoracodorsal and lumbosacral regions of eight Sunda porcupine adults. The histological staining was carried out using the picrosirius red method, while the samples were observed under a polarized light microscope and analysed with software. The results showed that the skin is composed of 36%-65% thick fibres, 20%-35% thin fibres and small amounts of other types with the lumbosacral region having higher compositions of thick and thin fibres than those in the thoracodorsal region. Furthermore, the thoracodorsal and lumbosacral regions have the highest composition of thick fibre in the deeper dermis and quill follicle, respectively. These demonstrated that the complexity of the skin structure of Sunda porcupine due to its quill derivates correlated with its collagen composition and distribution.


Asunto(s)
Puercoespines , Animales , Compuestos Azo , Colágeno/análisis , Piel/química , Coloración y Etiquetado/veterinaria
13.
Biosci Biotechnol Biochem ; 86(7): 811-818, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35425970

RESUMEN

Glycosaminoglycans (GAGs) are found in various tissues and are involved in many physiological functions. Since the rhesus monkey (Macaca mulatta) is the most widely used nonhuman primate in biomedical research, an understanding of the compositions of GAGs in their tissues is important. The aim of this study was to determine the content and sulfation pattern of disaccharides contained in several tissues of the rhesus monkey. The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from several tissues of female and male rhesus monkeys. Compositional analysis was performed after digestion with chondroitinases ABC and ACI to reveal the sulfation pattern of the CS/DS hybrid chain. This study revealed that the major CS/DS disaccharide units present in the tissues were A and C types. The E and iE types were specifically distributed not only in the tracheal tissue but also in gastrointestinal tissues.


Asunto(s)
Sulfatos de Condroitina , Dermatán Sulfato , Animales , Disacáridos , Femenino , Glicosaminoglicanos , Macaca mulatta , Masculino
14.
J Vet Med Sci ; 84(4): 494-501, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35173094

RESUMEN

Myogenesis, the formation of muscle fibers, is affected by certain glycoproteins, including chondroitin sulfate (CS), which are involved in various cellular processes. We aimed to investigate the mechanism underlying CS-E-induced suppression of myotube formation using the myoblast cell line C2C12. Differentiated cells treated with 0.1 mg/ml CS-E for nine days showed multinucleated and rounded myotubes with myosin heavy chain positivity. No difference was found between the CS-E-treated group with rounded myotubes and CS (-) controls with elongated myotubes in the levels of phospho-cofilin, a protein involved in the dynamics of actin cytoskeleton. Interestingly, N-cadherin, which is involved in the gene expression of myoblast fusion factors (myomaker and myomixer), was significantly downregulated at both the mRNA and protein levels following CS-E treatment. These results suggest that N-cadherin downregulation is one of the mechanisms underlying the CS-E-induced suppression of myotube formation.


Asunto(s)
Cadherinas , Sulfatos de Condroitina , Animales , Cadherinas/metabolismo , Diferenciación Celular , Fusión Celular/veterinaria , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Desarrollo de Músculos , Fibras Musculares Esqueléticas
15.
J Vet Med Sci ; 84(3): 306-309, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35022360

RESUMEN

In this study, we induced chemical damage of C2C12 myoblasts that had differentiated into myotubes with glycerol, and four sulfation enzymes for chondroitin sulfate (CS) [carbohydrate sulfotransferase (Chst) 12, Chst15 and Chst3 and uronyl 2-O-sulfotransferase (UST)] and two CS degradation enzymes [hyaluronidase (Hyal) 1 and Hyal2] were examined for changes in gene expression. Treatment of myoblasts with 5% glycerol significantly increased the expression levels of the sulfation enzymes Chst12 and Chst15 and the degradation enzymes Hyal1 and Hyal2. However, the expression levels of the other two genes (Chst3 and Ust) showed no change. Differences in the expression levels of these enzymes may help to understand the difference in responsiveness of myoblasts to glycerol after muscle injury in vivo or in vitro.


Asunto(s)
Sulfatos de Condroitina , Glicerol , Animales , Sulfatos de Condroitina/metabolismo , Expresión Génica , Glicerol/farmacología , Mioblastos/metabolismo
16.
Vet Comp Oncol ; 20(1): 313-323, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34657361

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers. There have only been few reports on the application of statins to cancer therapy in veterinary medicine, and differences in statin sensitivity among canine cancer cells have not been examined. In this study, we aimed to clarify the correlation between sensitivity to atorvastatin and epithelial/mesenchymal states in 11 canine cancer cell lines derived from mammary gland, squamous cell carcinoma, lung, and melanoma. Sensitivity to atorvastatin varied among canine cancer cells, with IC50 values ranging from 5.92 to 71.5 µM at 48 h, which were higher than the plasma concentrations clinically achieved with statin therapy. Atorvastatin preferentially attenuated the proliferation of mesenchymal-like cells. In particular, highly statin-sensitive cells were characterized by aberrant expression of the ZEB family of EMT-inducing transcription factors. However, ZEB2 silencing in highly sensitive cells did not induce resistance to atorvastatin. Taken together, these results suggest that high expression of ZEB is a characteristic of highly statin-sensitive cells and could be a molecular marker for predicting whether cancers are sensitive to statins, though ZEB itself does not confer statin sensitivity.


Asunto(s)
Enfermedades de los Perros , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Melanoma , Animales , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Enfermedades de los Perros/tratamiento farmacológico , Perros , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Melanoma/veterinaria
17.
J Vet Med Sci ; 83(12): 1812-1819, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34670921

RESUMEN

The purpose of this study was to elucidate the functions of estrogen and two estrogen receptors (ERs; ERα and ERß) in the myoregeneration process and morphogenesis. Cardiotoxin (CTX) was injected into the tibialis anterior (TA) muscles of ovariectomized (OVX) mice to induce muscle injury, and subsequent myoregeneration was morphologically assessed. The diameter of regenerated myotubes in OVX mice was significantly smaller than that in intact mice at all time points of measurement. OVX mice also showed lower muscle recovery rates and slower speeds than did intact mice. ER protein levels showed a predominance of ERß over ERα in both intact and OVX states. The ERß level was increased significantly at 7 days after CTX injection in OVX mice and remained at a high level until 14 days. In addition, continuous administration of E2 to OVX mice in which muscle injury was induced resulted in a significantly larger diameter of regenerated myotubes than that in mice that did not receive estrogen. The results indicate that estrogen is an essential factor in the myoregeneration process since estrogen depletion delayed myoregeneration in injured muscles and administration of estrogen under the condition of a low estrogen status rescued delayed myoregeneration. The results strongly suggested that ERß may be a factor that promotes myoregeneration more than does ERα.


Asunto(s)
Estrógenos , Fibras Musculares Esqueléticas , Animales , Estrógenos/farmacología , Femenino , Ratones , Morfogénesis , Músculo Esquelético , Ovariectomía/veterinaria , Regeneración
18.
Sci Rep ; 11(1): 12763, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140545

RESUMEN

Epithelial-mesenchymal transition (EMT) in primary tumor cells is a key prerequisite for metastasis initiation. Statins, cholesterol-lowering drugs, can delay metastasis formation in vivo and attenuate the growth and proliferation of tumor cells in vitro. The latter effect is stronger in tumor cells with a mesenchymal-like phenotype than in those with an epithelial one. However, the effect of statins on epithelial cancer cells treated with EMT-inducing growth factors such as transforming growth factor-ß (TGF-ß) remains unclear. Here, we examined the effect of atorvastatin on two epithelial cancer cell lines following TGF-ß treatment. Atorvastatin-induced growth inhibition was stronger in TGF-ß-treated cells than in cells not thusly treated. Moreover, treatment of cells with atorvastatin prior to TGF-ß treatment enhanced this effect, which was further potentiated by the simultaneous reduction in the expression of the statin target enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Dual pharmacological targeting of HMGCR can thus strongly inhibit the growth and proliferation of epithelial cancer cells treated with TGF-ß and may also improve statin therapy-mediated attenuation of metastasis formation in vivo.


Asunto(s)
Atorvastatina/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Neoplasias/patología , Factor de Crecimiento Transformador beta/farmacología , Biomarcadores de Tumor/metabolismo , Recuento de Células , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
J Vet Med Sci ; 83(7): 1022-1030, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33967186

RESUMEN

This study aimed to investigate the function of estrogen receptors (ERs) in myoregeneration and intermuscular adipogenesis. Ovariectomized (OVX) ERα knockout (KO) mice and ERß KO mice were used to assess the effect of estrogen on the myoregenerative process. Tibialis anterior muscle was collected on days 7, 10, and 14 after cardiotoxin injection to assess myotube morphology and adipogenesis area. Regenerated myotubes from OVX-ERß KO mice were consistently smaller in diameter than those from OVX-ERα KO and OVX-wild-type mice, whereas the adipogenesis area of OVX-ERß KO mice was consistently greater than that of the other types. Therefore, ERß may be an influential factor in promoting myoregeneration and adipogenesis inhibition compared to ERα.


Asunto(s)
Adipogénesis , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Células Musculares/citología , Regeneración , Animales , Estradiol , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Estrógenos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovariectomía/veterinaria
20.
J Vet Med Sci ; 82(12): 1729-1733, 2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33055467

RESUMEN

Uncoupling protein 1 (UCP-1) was believed to be an exclusive protein found in the brown adipose tissue of small rodents and humans; however, recent studies show that the expression of UCP-1 protein has been found in the sebaceous glands of the mouse tail and human skin. There are a few reports about the presence of UCP-1 in the sebaceous glands of other rodents, such as the Sunda porcupine (Hystrix javanica), a wild spiny rodent commonly found in Indonesia with a large sebaceous gland. The aim of this study was to identify the presence of UCP-1 in the sebaceous glands on the skin of the Sunda porcupine. The skin from three regions (thoracodorsal, lumbosacral and apex caudal) of eight adult Sunda porcupines was used to detect UCP-1-immunopositive cells through immunohistochemistry. All three regions were found immunopositive to anti-UCP-1 antibody in the sebaceous gland of quill and hair follicles, and the epidermal layer in quill and hair follicles with various intensities. The result of immunohistochemistry revealed that the thoracodorsal and apex caudal region was the most intense immunoreaction followed by the lumbosacral region. These findings proved that the presence of UCP-1 was also identified in the sebaceous glands of other rodent (Hystrix javanica) and regions of the body, which has not been reported previously.


Asunto(s)
Puercoespines , Glándulas Sebáceas , Animales , Femenino , Indonesia , Masculino , Ratones , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...